

Zing Chair

0 | Requirements - Customer and Technical

Geometric	
Max. weight of the chair = 15kg + weight of the person ~150kg max.	D
Size of seat: 39-45 cm (depth) x 45 cm (width)	D
Height range(seat height from the floor)- 44-56.7 cm	D
Footrest, Height of support- 10 cm	w

Kinematics	
Moving on the chair should be at ease	D
Moving the chair should make less noise	w
Backrest adjustment mechanism	w

Forces Max. weight chair should support = 1650N Density of the cushion = 1.6-2.4LB/cu.ft

Material Material	
Comfortable, breathable seat material	D
Durable framework	D

Safety	
Maximum load capacity	D
Chair must not topple	D
Should not have sharp edges	D

Assembly	
Minimal effort required	D
Sequential order to assemble	w

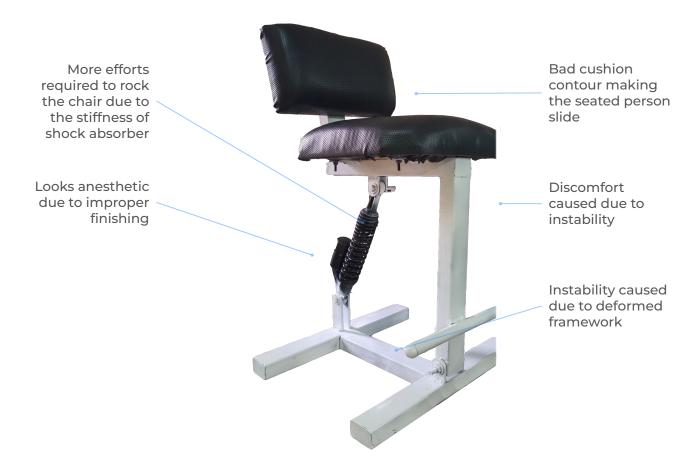
Transport	
Compact packaging	D
Weight reduction in packing	D
Ease of handling	w

Recycling	
Metals used can be recycled	w

1 | Embodiment determining requirements

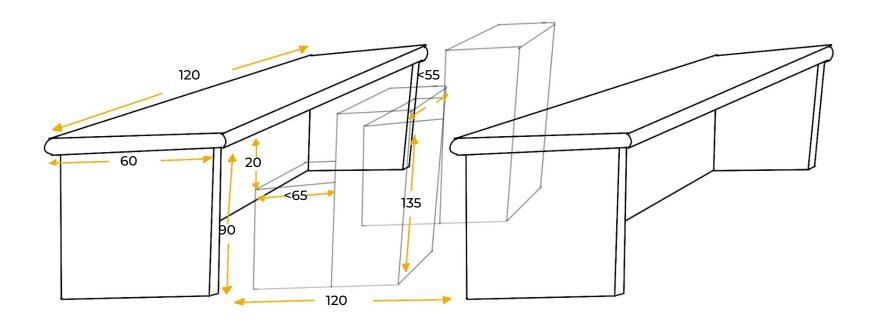
Layout

- Seat with backrest supported by framework
- Framework enabling motion
- Foot rest at the bottom of the framework


Dimension

- Supporting framework, max. Load - 165 kg
- Seat dimensions 39-45 x 45 cm
- Height of the seat from GL - 44-56 cm
- Height of the footrest from GL -10 cm

Material


- Breathable seat cover material
- Strong and durable framework material
- Shock absorber with stiffness allowing smooth motion

1 | Problems identified in the current embodiment

2 | Spatial constraints

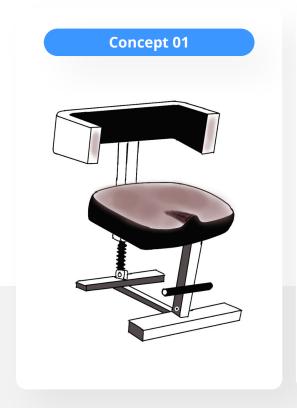
Note: All dimensions in cm, Not to scale

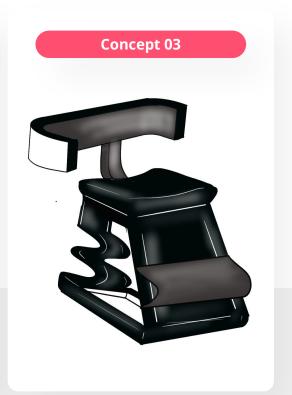
3 | Embodiment determining main function carriers

Main Function	Main function carrier	Designed/Bought-out
	Seat	Designed
Human support	Back rest	Designed
	Foot rest	Designed
Motion	Supporting frame	Designed
MOCION	Shock absorber	Bought-out
	Supporting frame	Designed
Stability	Base	Designed
	Shock absorber	Bought-out

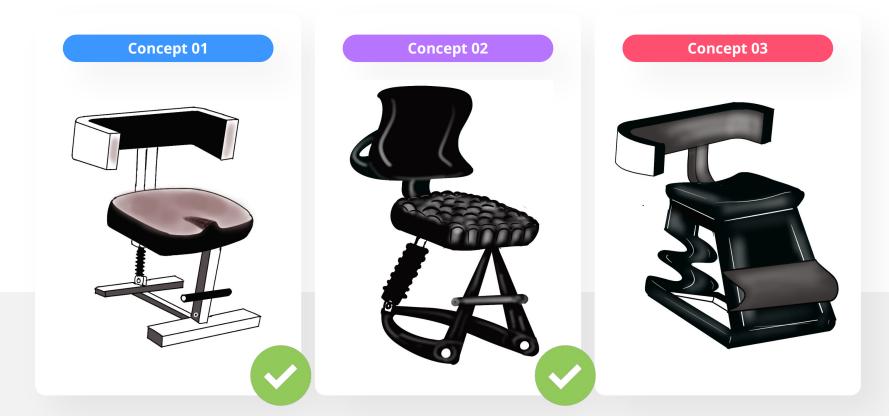
3 | Embodiment determining main function carriers

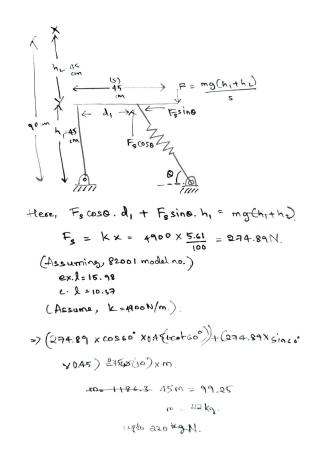
Main Function	Main function carrier	Designed/Bought-out
	Seat	Designed
Comfort	Cushion material	Bought-out
	Proportions	Designed
Durability	Materials	Bought-out
Aesthetics		Designed
Maintenance	Chair	Designed
Cost		Designed

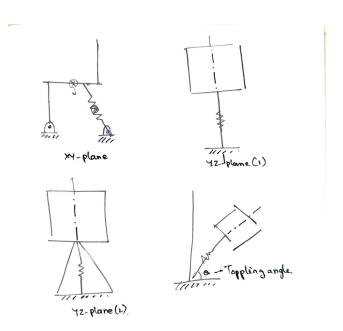

4 | Preliminary scale layouts & form designs


4 | Preliminary scale layouts & form designs

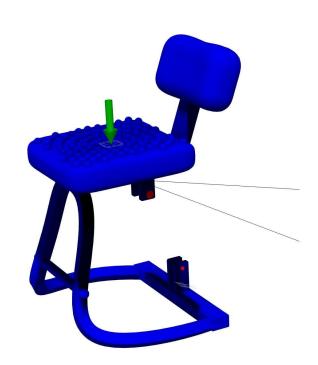
Supporting frame with base

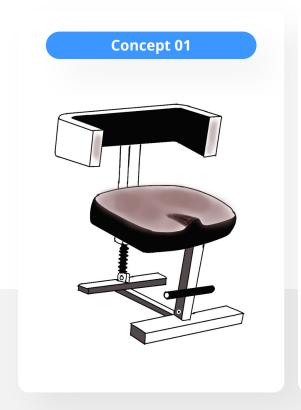


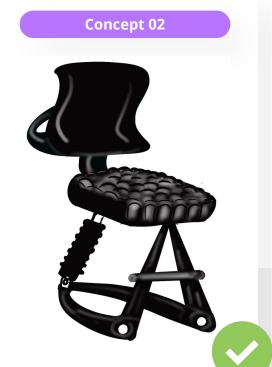



#	Function	Working principle	Layout	Safety	Ergonomics	Production	Quality control	Assembly
1	•	•	②	⊘	•		•	②
2	②	•	②	Ø	•		②	
3	•	×	×	⊘	×	×	•	•

#	Transport	Operation	Maintenance	
1	⊘	②	8	10
2	•	•	8	10
3	8	•	•	6

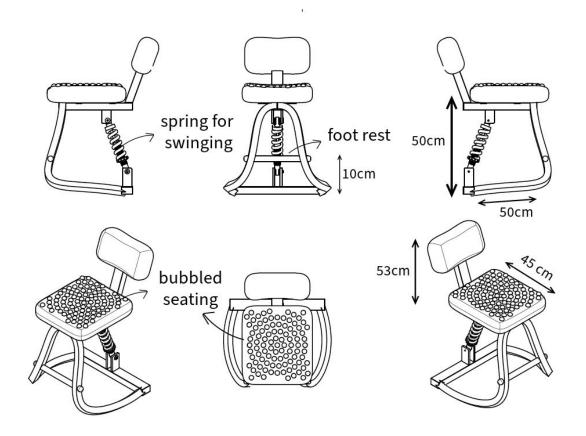

5| **FEA**


We tried to apply a maximum pressure of 0.01744 pa.


The total area of the seat is 0.08614 meter square.

We applied a vertical force of 1500N.

Then, applied constraints of load to both the connecting bolts.



5 | Preliminary layout

Main function carrier	Auxiliary function	Auxiliary function carrier
Seat	Protects	Seat cover
Back rest	Supported by frame	Bolts
back rest	Attaches back rest to cover	Staples
Foot rest	Attached to frame	Welded
Supporting frame with base	Supports seat	Bolts

Main function carrier	Auxiliary function	Auxiliary function carrier
Supporting frame with base	Supports itself	Bolts and <mark>Pivot plate</mark> , Welded
	To base	Welded
	Suspension	Bolts and Pivot

Chenille

Polyester

Velvet

Acrylic

+9 colours/patterns

Rpi shop - 200 Pcs Set, M8 x 20mm Hex Head Screws, Hex Head bolt With Nut & Washer, Zinc-Coated (50 Pcs Each)

***** 118

₹660 (₹3.30/count) M.R.P: ₹960 (31% off)

SYLIX ® M4 x 12mm Length Button Head Socket Cap Screws, Stainless Steel, Bright Finish, | Allen Button Head Bolt With Nut & Washer (10...

****** ~ 4

₹**350** M.R.P: ₹506 (31% off)

INR 35/piece

Rpi shop - M4 x 12mm Stainless Steel Socket Head Cap Screws, Allen Socket Drive, Fully Thread, Bright Finish, Machine Thread, Quantity -...

**** × 91

₹195 (₹19.50/count) M.R.P: ₹495 (61% off)

INR 19.5/piece

INR 11/piece

INR 35/piece

8 | Design for Aesthetics

Visual Information

Market & User information:

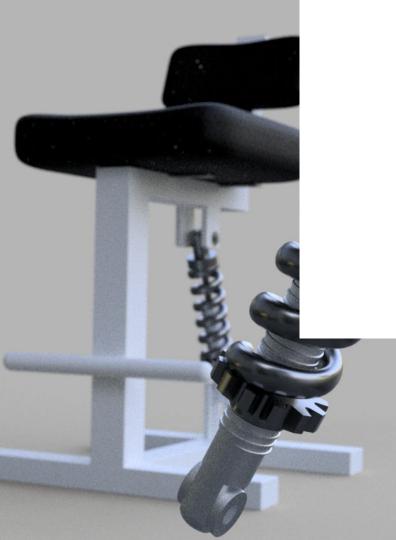
For Educational institutions; Students, Lecturers, Research scholars, VIPs

Purpose information:

Active seating Foot rest

Expression		
Stable	Comfortable	
Allows motion	Dignified	
Light weight		

| Design for Aesthetics


Structure Unify Colour

9 | BOM

Component	Cost (INR)
60 x 40 pipe, 14 gauge	1200/20'
40 x 40 pipe, 16 gauge	250/kg
1" round, mild steel CR	150
1" bolts (6) + 3" bolt (2)	60
12mm Plywood 3' x 2'	110/sq .ft
5mm Cushion	550
Bubbled seat	Upto 1000
Shock absorber	1650
labour charges	1200
m4*12mm head cap screws	19/unit
Acrylic spray paint	300

INR 6345

9 | Detailed layout

Principles of Embodiment Zing Chair

Harun Vignesh Hemanth G N Nishita Sree

Principles of Force Transmission

Uniform Strength

Tennis Racket

The frame is stiffer near the head, flexible near the handle to manage the stress along these flowlines. This optimizes racket control and power transfer while minimizing frame deformation.

Direct & Short Force Transmission Path

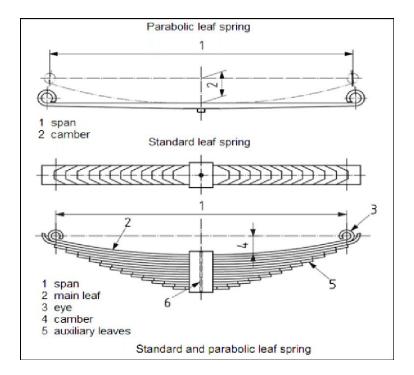
Screwdriver

The handle transmits torque directly to the screw head through a straight shaft, minimizing effort and maximizing torque transfer

Matched Deformation

Suspension

Springs and dampers are carefully chosen to deform together, ensuring smooth and controlled suspension movement over uneven terrain.

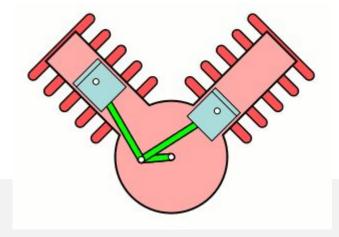


Principles of Force Transmission

Uniform Strength

Leaf spring suspension

The frame is stiffer near the head, flexible near the handle to manage the stress along these flowlines. This optimizes racket control and power transfer while minimizing frame deformation.


Principles of Force Transmission

Balanced Forces

V Configuration engines

Counterbalances each other

Reduces need for extra balancing elements

Principles of Division of Tasks

Assignment of Subfunctions

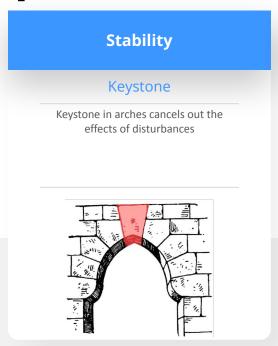
Engine as structural member

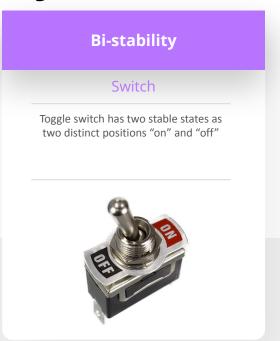
Internal combustion engines due to their sturdy construction can be used as structural member in a two-wheeler chassis. Hence fulfils several functions in one carrier

Division of tasks for distinct functions

Fuel tank placement

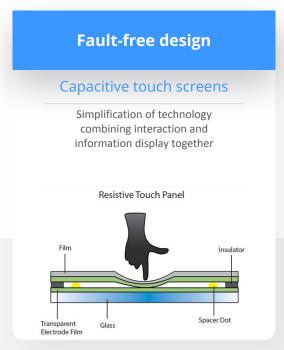
Subfunctions: Capture image, process image, store image, display image.
Assigned components: Lens, sensor, processor, memory, screen.




Division of tasks for identical functions

Extra motors for drivetrain

Extra motors engage only when the performance is demanded. For nominal usage the extra motors remain turned off


Principles of Stability & Bi-stability

#5

Principles of Fault free design

